VirFree brings together participants from both academia and privatecompanies to collaborate through their expertise on the following objectives
rfree, NGS, Nanobodies, Fruit tree viruses, viroids, virus elimination ,http://www.virfree.eu ,virfree,virfree.eu , This email address is being protected from spambots. You need JavaScript enabled to view it.
Citrus industry is worldwide dramatically affected by outbreaks of Citrus tristeza virus (CTV). Controls should be applied to nurseries, which could act as diversity hotspots for CTV. Early detection and characterization of dangerous or emerging strains of this virus greatly help to prevent outbreaks of disease. This is particularly relevant in those growing regions where no dedicated certification programs are currently in use.
Citrus vein enation virus (CVEV) was described in Spain and then it has been reported in several citrus growing areas of Asia, America and Australia. Here, the occurrence of CVEV in Italy has been documented for the first time. The full genome sequence of a CVEV Italian isolate (14Q) was determined by high-throughput sequencing and the presence of the virus was confirmed by RT-PCR and graft-transmission to indicator plants, from which the virus was recovered six-months post-inoculation.
Citrus concave gum-associated virus (CCGaV) is a negative-stranded RNA virus, first reported a few years ago in citrus trees from Italy. It has been reported in apple trees in the USA and in Brazil, suggesting a wider host range and geographic distribution. Here, an anti-CCGaV polyclonal antiserum to specifically detect the virus has been developed and used in a standard double antibody sandwich enzyme-linked immunosorbent assay (DAS-ELISA) that has been validated as a sensitive and reliable method to detect this virus both in citrus and apple trees. In contrast, when the same antiserum was used in direct tissue-blot immunoassay, CCGaV was efficiently detected in citrus but not in apple.
VirFree (H2020-MSCA-RISE-2016-Virus free fruit nurseries) © All Rights Reserved | This project has received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement No 734736.